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ENCS 533 – Advanced Digital Design 

Lecture 6 

Processes in VHDL and Synchronous Logic 
 

1 Introduction 
In this lecture, we will look at how to describe synchronous logic, logic whose 

operation is synchronized to the edges of a clock signal. In order to do this, we will 

need to introduce a very important feature of VHDL, the process. 

 

2 Concurrent VHDL 
Here is the VHDL code that we saw previously, which implements the functionality 

of a full adder: 

 
1  ARCHITECTURE simple OF fulladd IS 

2  BEGIN 

3 cout <= ( x AND y ) OR ( cin AND x ) OR ( y AND cin ); 

4 sum <= cin XOR x XOR y; 

5  END ARCHITECTURE simple; 

 

This style of code is often referred to as a dataflow description. The output signals are 

on the LHS of assignment statements, and the inputs are on the RHS. The outputs are 

connected to the inputs through arithmetic and/or logical connectives, such as AND, 

OR, XOR, +, -, etc. Let’s think through what this piece of code means. 

 

Statement 3 will run whenever a RHS value changes. So it runs when x, y or cin 

changes, i.e. when there is an event on x, y or cin. In the jargon of VHDL, statement 3 

is sensitive to signals x, y, cin. Its sensitivity list is x, y, cin. 

 

Similarly, statement 4 has a sensitivity list of x, y, cin. It will run when there is an 

event on any of the signals on its sensitivity list. 

 

Statements 3 and 4 are concurrent, i.e. they are both active at the same time, and are 

triggered by an event on a signal on their sensitivity lists. 

 

For concurrent code, the order of statements doesn’t matter, so we could scramble the 

order of statements 3 and 4, and the effect would be the same: 

 
1  ARCHITECTURE scrambled OF fulladd IS 

2  BEGIN 

3 sum <= cin XOR x XOR y; 

4 cout <= ( x AND y ) OR ( cin AND x ) OR ( y AND cin ); 

5  END ARCHITECTURE scrambled; 

 

This illustrates the “normal” behaviour of statements in VHDL, and for many 

circumstances it is fine. However, there exist some devices that are not sensitive to all 

of their inputs. Examples include latches and flip flops. For these devices, the 

“normal” behaviour of VHDL makes life difficult. It is useful to be able to explicitly 

say what we want the sensitivity list of a piece of code to be. This is done by a VHDL 

feature called a PROCESS. 
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3 Processes 
A process looks like this 

 
PROCESS ( sensitivity list ) 

BEGIN 

  Statement 1; 

  Statement 2; 

  Statement3; 

END PROCESS; 

 

The way this works is as follows: 

• The process waits until it is triggered by an event on one of the signals in its 

sensitivity list. 

• When it is triggered it executes each of the statements in its body sequentially, i.e. 

one after the other, first statement 1, then statement 2, then statement 3. Note that 

this is quite different from “normal” VHDL, where statement order has no 

significance. 

 

So here is our original full adder: 

 
1  ARCHITECTURE simple OF fulladd IS 

2  BEGIN 

3 cout <= ( x AND y ) OR ( cin AND x ) OR ( y AND cin ); 

4 sum <= cin XOR x XOR y; 

5  END ARCHITECTURE simple; 

 

And here is a different version, which achieves exactly the same thing: 

 
1  ARCHITECTURE with_proc OF fulladd IS 

2  BEGIN 

3 PROCESS (x, y, cin) 

4 BEGIN 

5  cout <= ( x AND y ) OR ( cin AND x ) OR ( y AND cin ); 

6 END PROCESS; 

7 

8 sum <= cin XOR x XOR y; 

9  END ARCHITECTURE with_proc; 

 

The process (lines 3-6) runs concurrently with the statement at line 8. Both are active 

at the same time, waiting for an event on their sensitivity list. For line 8, the 

sensitivity list is the signals on the RHS. For the process, the sensitivity list is the list 

explicitly declared in line 3. We can go even further, and use processes for both 

assignments: 

 
1  ARCHITECTURE with_2proc OF fulladd IS 

2  BEGIN 

3 PROCESS (x, y, cin) 

4 BEGIN 

5  cout <= ( x AND y ) OR ( cin AND x ) OR ( y AND cin ); 

6 END PROCESS; 

7 

8 PROCESS (x, y, cin) 

9 BEGIN 

10  sum <= cin XOR x XOR y; 

11 END PROCESS; 

12 END ARCHITECTURE with_2proc; 
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The two processes (lines 3-6 and 8-11) run concurrently, i.e. both simultaneously 

monitor their sensitivity lists waiting to be triggered into life. Finally we could merge 

the two processes together to get this: 

 
1  ARCHITECTURE all_in_one OF fulladd IS 

2  BEGIN 

3 PROCESS (x, y, cin) 

4 BEGIN 

5  cout <= ( x AND y ) OR ( cin AND x ) OR ( y AND cin ); 

6  sum <= cin XOR x XOR y; 

7 END PROCESS; 

8  END ARCHITECTURE all_in_one; 

 

When there is an event on x, y or cin, the process runs and new values are queued for 

cout and sum. 

 

3.1 Sequential VHDL 
Sequential code “flows” from one line to the next, in blocks of code. This means that 

that we can build up complicated sequences of statements that build up a required 

behaviour over many lines. This is a very powerful way of doing things, and 

corresponds fairly closely to the way that the C programming language works.  

 

In concurrent VHDL by contrast, each statement is completely independent of 

neighbouring statements, so each statement must be self contained. Whatever 

behaviour we are trying to describe for a particular signal has to be bunched together 

into a single statement of code. This can make description of certain types of 

behaviour difficult or even impossible. 

 

There are many constructs of a language that do make sense if there is a flow of code 

from one line to the next, but don’t make any sense at all if each statement is 

independent of its neighbours. So, in sequential VHDL there are many additional 

features of the language that we can use that are not available in concurrent VHDL. 

 

So wrapping up a description in a process gives us the opportunity to write sequential 

code, which makes many additional features of the language available to us. Used 

wisely, this can be a good thing. However, it does give us the ability to write VHDL 

that cannot be synthesised to hardware, or may synthesise very inefficiently. By 

contrast, the dataflow approach more or less forces us to write code that will 

synthesise very nicely. 

 

3.2 Sequential and concurrent conditionals 
The syntax of the sequential IF block is shown below

1
 

 
IF condition_1 THEN 

 sequence of statements 

ELSIF condition_2 THEN 

 sequence of statements 

ELSE 

 sequence of statements 

END IF; 

                                                
1 Notice that ELSIF (one word) is not the same thing as ELSE IF (two words) 
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Notice that this assumes a sequential flow of control from one statement to the next. 

So the IF block can only be used inside a process. 

 

In concurrent code, each line stands alone and is triggered into life by a change on its 

RHS. So in order to achieve conditional assignment in a piece of concurrent code, we 

need a version of the IF statement that bundles all the functionality into one (possibly 

quite long) line of code. This is the WHEN statement. 

 

a <= value1 WHEN condition1 ELSE value2 WHEN conditon2 ELSE value3; 

 

4 The D-type flip-flop 
The vast majority of hardware designs use synchronous logic, where system operation 

is driven by a clock signal distributed throughout the system. Each hardware block in 

the system will update its outputs at the rising edge
2
 of the clock signal, and the 

outputs will then stay stable throughout the rest of the cycle until the next rising
3
 

edge. 

 

The basic device that is used to accomplish this is the D-type flip flop. 

D 

Clk 

Q 

 
Here is the ENTITY definition for this device
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LIBRARY IEEE; 

USE IEEE.STD_LOGIC_1164.ALL; 

 

-- D-type flip-flop 

ENTITY dff IS 

    PORT ( d  : IN  STD_LOGIC;     -- Data input 

           clk: IN  STD_LOGIC;     -- Clock input 

           Q  : OUT STD_LOGIC);    -- Output gets new value on 

                                   -- rising edge of clock 

END ENTITY dff; 

 

The behaviour of this device is as follows. When the clock is stable, Q simply holds 

its value constant. When a rising clock edge occurs, the output Q takes on the value 

that D has at the moment when the clock edge occurred. It then holds that value 

constant until the next rising clock edge occurs, at which time it updates itself again. 

 

Note that the output q does not update its value whenever d changes. So to write this 

 

                                                
2
 or sometimes falling edge 

3
 or falling 

4
 Note that in previous lectures the description have been written in poor style, with no comments, and 

bunched up as much as possible so that they don't take up too much room on the page. The style used 

here is better, with the inputs and outputs clearly spread out, and individually commented. In 

professional code there would be additional comments at the beginning of the definition giving 

information such as author name, date of completion of the first version, and revision history saying 

what each major revision was and when it was completed. 
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ARCHITECTURE wrong OF dff IS 

BEGIN 

    q <= d; 

END ARCHITECTURE wrong; 

 

would give completely the wrong behaviour. Here is an architecture that correctly 

describes the behaviour of the device: 

 
ARCHITECTURE correct OF dff IS 

BEGIN 

    PROCESS (clk) 

    BEGIN 

        IF ( rising_edge(clk) ) THEN 

            q <= d; 

        END IF; 

    END PROCESS; 

END ARCHITECTURE correct; 

 

Whenever clk changes its value, the process will run. However, clk might have 

changed due to a falling edge of the clock (which should not trigger an update to q) so 

we need to insert an IF statement which causes q to be updated only on the rising 

edge of clk. The rising_edge function is contained in the STD_LOGIC_1164 package, 

and returns TRUE when clk has changed from 0 to 1 during the last delta. 

 

4.1 The D-type with reset 
When an electronic system is switched on, the contents of all flip-flops will go 

randomly to 1 or 0. At power-up the contents of all flip-flops are garbage. (It is this 

condition that the ‘U’ value in VHDL is designed to emulate.) It is useful to be able to 

put the flip-flops into a known state (usually ‘0’, but sometimes ‘1’). This is done by 

means of a Reset signal. 

D 

Clk 

Q 

Reset 

 
The Reset signal may be synchronous, but is usually asynchronous. If the Reset is 

synchronous, then it is ignored until the rising edge of the clock. When the rising edge 

comes, if Reset=’1’ then q goes to ‘0’. If Reset=’0’, then the flip-flop exhibits normal 

behaviour, i.e. q<=d. This would be described like this: 

 
ARCHITECTURE synch_reset OF dff IS 

BEGIN 

    PROCESS (clk) 

    BEGIN 

        IF ( rising_edge(clk) ) THEN 

            IF ( reset=’1’ ) THEN 

                q <= ‘0’; 

            ELSE 

                q <= d; 

            END IF; 

        END IF; 

    END PROCESS; 

END ARCHITECTURE synch_reset; 
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If the Reset is asynchronous, then it takes immediate effect, no matter what the clock 

is doing. This means that the flip-flop is always sensitive to its Reset input. This 

would be described like this: 

 
ARCHITECTURE asynch_reset OF dff IS 

BEGIN 

    PROCESS (clk, reset) 

    BEGIN 

        IF ( reset=’1’ ) THEN 

            q <= ‘0’; 

        ELSIF ( rising_edge(clk) ) THEN 

            q <= d; 

        END IF; 

    END PROCESS; 

END ARCHITECTURE asynch_reset; 

 

5 Synchronous logic 
 

5.1 Applications of D-type flip-flops: cleaning up glitches 
In lecture 4 we saw an example of a circuit which was glitchy. 

 

 

g1 
y 

n1 
z 

x 
g3 

Example_circuit 

n2 g2 

 
 

When x=’0’ and y=’1’ we expect z=’0’.  

When x=’1’ and y=’1’ we also expect z=’0’. 

Here is a simulation of the behaviour of the circuit as x transitions between ‘0’ and 

‘1’. 

 

 
 

Whenever x transitions, z briefly goes to the “wrong” value. In many situations this 

can cause problems, so we would like to find a way of “cleaning up” the output z. A 

simple way to do this is like this: 
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g1 
y 

n1 z x 
g3 

Example_circuit 

n2 g2 

D 
 

Clk 
 

Synch_z 
 

 
 

We attach a D-type flip-flop to the output. This will sample the value of z each time 

there is a rising edge of clk, and then hold this value steady over the whole of the 

remainder of the clock cycle. If we arrange for the clock edges to occur at a point 

when we know that all transient glitches have died away, then the output of the flip-

flop will give us a “clean” signal. 

 

 
 

 

5.2 Carry ripple in adders 
Let’s re-visit our structural description of the adder: 
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When we have a simple set of inputs, this behaves sensibly. Suppose x=”0000” and 

y=”0001”. Then after a short delay as the input values move through the gate delays 

in the full adder, sum gets a new value of “0001”. 

 

Now suppose we have the values x=”0001” and y=”0111”. After a brief delay sum 

becomes “0110”. Then after a short while, fulladder 1 “notices” that fulladder 0 has 

generated a carry: its sum1 output flips to ‘0’, and its carry flips to ‘1’. So sum 
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becomes “0100”. Then after another short while, fulladder 2 notices that fulladder 1 

generated a carry and sum becomes “0000”. Then after another while fullader 3 

notices the carry that has just been generated by fulladder 2. Then sum becomes 

“1000” 

 

Here is a simulation of how the adder behaves with the two different sets of inputs: 

 

 
 

When x=1, y=0, the sum output goes quickly to the correct output, with no 

misbehaviour en route. However, when x=1 and y=7, we have a series of outputs 

which are garbage, and the sum takes a long time to settle to the correct value. 

 

This effect is called carry ripple. For our little four bit adder, the problem was 

awkward enough. But realistic adders are more likely to be 16, 32 or even 64 bits in 

length, so the carry may have to ripple down a very long path. This can cause a long 

delay period during which the outputs of the adder are garbage. 

 

5.3 The synchronous adder 
The normal way to fix this is to register the outputs: 
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A group of D-type flip flops all controlled by the same clock signal is called a 

register. This is what the output of the register looks like: 
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The registered sum will be updated at the each rising edge of the clock signal. If the 

clock is slow enough that sum has completely settled before the next clock edge 

arrives, then the registered sum is a cleaned up version of sum. (But notice that if we 

ran the clock too fast, the rising edge would come during the period in which sum is 

garbage, and the registered output would therefore be wrong). 

 

One very important point to notice here is that the output is acquiring its value one 

clock cycle after the corresponding inputs. So the output goes to 1 the cycle after the 

inputs were x=0, y=1. Similarly, the output goes to 8 one cycle after x=7, y=1. This is 

often a source of confusion, and you should make sure you understand why this 

happens. 

 

5.4 VHDL description of the synchronous adder 
So far we have been looking at a structural description of the adder. But usually 

humans don’t produce structural code. They write behavioural code like this: 

 
ARCHITECTURE behavioural OF adder IS 

BEGIN 

    sum <= a + b; 

END ARCHITECTURE behavioural; 

 

and leave it to the synthesis tool to produce the structural gate-level description of the 

design. Now if we are looking for a synchronous adder, the above description isn’t 

good enough. There is nothing to tell the synthesis tool that we want the addition to be 

synchronized to a clock signal. 

 

An obvious way to describe the adder with registered output is to instantiate 4 flip-

flops at the output of the adder: 

 
ARCHITECTURE synchronous OF adder IS 

    SIGNAL clk: STD_LOGIC; 

    SIGNAL reg_sum: STD_LOGIC_VECTOR ( 3 DOWNTO 0 ); 

BEGIN 

    sum <= a + b; 

    g1: ENTITY work.dff(correct)  

        PORT MAP ( d=>sum(0), clk=>clk, q=>reg_sum(0) ); 

    g2: ENTITY work.dff(correct)  

        PORT MAP ( d=>sum(1), clk=>clk, q=>reg_sum(1) ); 

    g3: ENTITY work.dff(correct)  

        PORT MAP ( d=>sum(1), clk=>clk, q=>reg_sum(2) ); 

    g4: ENTITY work.dff(correct)  

        PORT MAP ( d=>sum(1), clk=>clk, q=>reg_sum(3) );END 

ARCHITECTURE synchronous; 

 

However, this is pretty painful (even more so for a 32-bit adder). Instantiating lots of 

small pieces of hardware is a structural way to do things, and we normally don’t want 

humans to operate in this way. This is much better: 
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ARCHITECTURE synchronous OF adder IS 

    SIGNAL clk: STD_LOGIC; 

    SIGNAL reg_sum: STD_LOGIC_VECTOR ( 3 DOWNTO 0 ); 

BEGIN 

    sum <= a + b; 

 

    process (clk) 

    begin 

        if ( rising_edge(clk ) ) then 

            reg_sum <= sum; 

        end if; 

    end process; 

END ARCHITECTURE synchronous; 

 

Now we have made in clear to the synthesis tool that we want a registered version of 

sum to be created, synchronized to the rising edge of the clock. It is then up to the 

synthesis tool to figure out how to build a circuit that achieves this behaviour. 

 

This description is better still: 

 
ARCHITECTURE synchronous OF adder IS 

    SIGNAL clk: STD_LOGIC; 

    SIGNAL reg_sum: STD_LOGIC_VECTOR ( 3 DOWNTO 0 ); 

BEGIN 

    process (clk) 

    begin 

        if ( rising_edge(clk) ) then 

            reg_sum <= a + b; 

        end if; 

    end process; 

END ARCHITECTURE synchronous; 

 

If we want a reset signal, that can asynchronously reset the adder output to zero, this 

is achieved in a similar fashion: 

 
ARCHITECTURE synchronous OF adder IS 

    SIGNAL clk: STD_LOGIC; 

    SIGNAL reg_sum: STD_LOGIC_VECTOR ( 3 DOWNTO 0 ); 

BEGIN 

    process (clk, reset) 

    begin 

        IF ( reset=’1’ ) THEN 

            reg_sum <= “0000”; 

        ELSIF ( rising_edge(clk) ) THEN 

            reg_sum <= a + b; 

        end if; 

    end process; 

END ARCHITECTURE synchronous; 

 

This style of coding is called register transfer level coding. We are using dataflow 

statements, but wrapping them up in processes triggered by the clock (and possible 

some reset or enable signals) in order to make it clear on what clock cycle the outputs 

should assume their values. Notice that in RTL we are simply defining the behaviour 

we want ( in this example reg_sum <= a+b on a rising edge of the clock). We are 

leaving it entirely up to the synthesis tool to infer what configuration of registers will 

be needed to give us this behaviour. 
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Summary 
In this lecture we have looked at how to use clocked processes to build register 

transfer level (RTL) descriptions. These are behavioural descriptions that make it 

clear on which clock edge the outputs must assume their value. These descriptions can 

then be synthesised into synchronous circuits using the appropriate configuration of 

registers by a synthesis tool. 

 

You should now know... 
How to construct behavioural descriptions of synchronous circuits 

 

The meaning of the following: 

• Sensitivity list 

• Sequential execution 

• Concurrent execution 

• Dataflow description 

• Register transfer level (RTL) description 

• Process 

• Carry ripple 

 


